
www.anl.gov

ALCF Computational Performance Workshop – May 5th 2020

Sudheer Chunduri Acknowledgements
sudheer@anl.gov Krishna Kandalla, Cray

Optimizing MPI Performance on Theta

http://anl.gov

2

Outline

§ Cray XC network software stack and MPI software stack
§ Non-blocking collectives
§ Topology mapping optimizations
§ Few key performance tuning knobs
§ MPI+X optimizations
§ MPI support for MCDRAM on KNL
§ Cray XC routing optimizations
§ Noise mitigation at the node level

3

Cray XC Network Software Stack

uGNI - Generic Network Interface
(message passing based)

DMAPP - Distributed Shared Memory
Application APIs (shared memory)

uGNI and DMAPP provide low-level
communication services to user-space
software

4

Cray MPI Software Stack (CH3 device)

Collectives RMA Pt2Pt

Application
MPI Interface

MPICH

CH3 Device

Xpmem

GNI NetMod Interface

GNI

Cray specific
components

PM
I

Nemesis

Jo
b

la
un

ch
er

ROMIO

ADIO

Lus. GPFS ...

CH3 Interface

I/O Enhancements

GPUs

DMAPP

5

MPI-3 Nonblocking Collectives

§ Enables overlap of communication/computation similar to nonblocking (send/recv)
communication

§ Non-blocking variants of all collectives: MPI_Ibcast (<bcast args>, MPI_Request
*req);

§ Semantics
§ Function returns no matter what
§ Usual completion calls (wait, test)
§ Out-of-order completion

§ Semantic advantages
§ Enables asynchronous progression (software pipelining)
§ Decouple data transfer and synchronization

(Noise Resiliency)
§ Allow overlapping communicators
§ Multiple outstanding operations at any time

MPI_Comm comm;
int array1[100], array2[100];
int root=0;
MPI_Request req;
...
MPI_Ibcast(array1, 100, MPI_INT,
root, comm, &req);
compute(array2, 100);
MPI_Wait(&req, MPI_STATUS_IGNORE);

6

MPI-3 Nonblocking Collectives Support

§ Includes many optimizations for MPI-3 nonblocking Collectives
§ Not ON by default. User must set the following env. Variables:

export	MPICH_NEMESIS_ASYNC_PROGRESS=[SC|MC|ML]	(network interface DMA engine enables
asynchronous progress)

export	MPICH_MAX_THREAD_SAFETY=multiple

§ Special optimizations for Small message MPI_Iallreduce, based on Aries
HW Collective Engine:
Users	must	link	against	DMAPP
-Wl,--whole-archive,-ldmapp,--no-whole-archive	(static	linking)	
-ldmapp (dynamic	linking)
export	MPICH_NEMESIS_ASYNC_PROGRESS	=[SC|MC|ML]		
export	MPICH_MAX_THREAD_SAFETY=multiple
export	MPICH_USE_DMAPP_COLL=1

7

Topology Mapping and Rank Reordering

§ Topology mapping
§ Minimize communication costs through interconnect topology aware task mapping
§ Could potentially help reduce congestion
§ Node placement for the job could be a factor (no explicit control available to request a specific

placement)

§ Application communication pattern
§ MPI process topologies expose this in a portable way
§ Network topology agnostic

§ Rank reordering
§ Can override the default mapping scheme
§ The default policy for aprun launcher is SMP-style placement
§ To display the MPI rank placement information,
• set MPICH_RANK_REORDER_DISPLAY.

8

MPI Rank Reordering

§ MPICH_RANK_REORDER_METHOD
§ Vary rank placement to optimize communication (ex: maximize on-node communication

between MPI ranks)

§ Use CrayPat with “-g mpi” to produce a specific MPICH_RANK_ORDER file to maximize
intra-node communication

§ Or, use perf_tools grid_order command with your application's grid dimensions to layout
MPI ranks in alignment with data grid

§ To use:
• name your custom rank order file: MPICH_RANK_ORDER
• This approach is physical system topology agnostic
export	MPICH_RANK_REORDER_METHOD=3

9

MPI Rank Reordering
§ MPICH_RANK_REORDER_METHOD (cont.)

§ A topology and placement aware reordering method is also available
§ Optimizes rank ordering for Cartesian decompositions using the layout of nodes in the job
§ To use:
• export	MPICH_RANK_REORDER_METHOD=4
• export	MPICH_RANK_REORDER_OPTS=“–ndims=3	–dims=16,16,8”

MPI Grid Detection:
There appears to be point-to-point MPI communication in a 96 X 8 grid pattern. The 52% of the total execution time
spent in MPI functions might be reduced with a rank order that maximizes communication between ranks on the same node.
The effect of several rank orders is estimated below.

A file named MPICH_RANK_ORDER.Grid was generated along with this report and contains usage instructions and the Custom
rank order from the following table.

Rank On-Node On-Node MPICH_RANK_REORDER_METHOD
Order Bytes/PE Bytes/PE%

of Total
Bytes/PE

Custom 2.385e+09 95.55% 3
SMP 1.880e+09 75.30% 1
Fold 1.373e+06 0.06% 2
RoundRobin 0.000e+00 0.00% 0

10

Profiling with CrayPat
Table 1: Profile by Function Group and Function

Time% | Time | Imb. Time | Imb. | Calls | Group

| | | Time% | | Function

| | | | | PE=HIDE

100.0% | 667.935156 | -- | -- | 49,955,946.2 | Total

|--

| 40.0% | 267.180169 | -- | -- | 49,798,359.2 | MPI

||---

|| 24.0% | 160.400193 | 28.907525 | 15.3% | 2,606,756.0 | MPI_Wait

|| 6.4% | 42.897564 | 0.526996 | 1.2% | 157,477.0 | MPI_Allreduce

|| 4.8% | 31.749303 | 3.923541 | 11.0% | 42,853,974.0 | MPI_Comm_rank

|| 3.5% | 23.303805 | 1.774076 | 7.1% | 1,303,378.0 | MPI_Isend

|| 1.1% | 7.658009 | 0.637044 | 7.7% | 1,303,378.0 | MPI_Irecv

||===

| 39.1% | 260.882504 | -- | -- | 2.0 | USER

||---

|| 39.1% | 260.882424 | 17.270557 | 6.2% | 1.0 | main

||===

| 20.9% | 139.872482 | -- | -- | 157,585.0 | MPI_SYNC

||---

|| 20.4% | 136.485384 | 36.223589 | 26.5% | 157,477.0 | MPI_Allreduce(sync)

|===

• Application built with
“pat_build -g mpi”

• pat_report generates
the CrayPat report

• Note the MPI call
times and number of
calls

• Load imbalance
across the ranks

11

==
Total
--

MPI Msg Bytes% 100.0%
MPI Msg Bytes 18,052,938,280.0
MPI Msg Count 1,460,959.0 msgs
MsgSz <16 Count 157,529.0 msgs
16<= MsgSz <256 Count 65.0 msgs
256<= MsgSz <4KiB Count 2,815.0 msgs
4KiB<= MsgSz <64KiB Count 1,300,511.0 msgs
64KiB<= MsgSz <1MiB Count 39.0 msgs

==
MPI_Isend
--

MPI Msg Bytes% 100.0%
MPI Msg Bytes 18,051,670,432.0
MPI Msg Count 1,303,378.0 msgs
MsgSz <16 Count 16.0 msgs
16<= MsgSz <256 Count 0.0 msgs
256<= MsgSz <4KiB Count 2,812.0 msgs
4KiB<= MsgSz <64KiB Count 1,300,511.0 msgs
64KiB<= MsgSz <1MiB Count 39.0 msgs

==

Profiling with CrayPat

MPI message sizes are
reported

The message size
distributions can help
characterize an
application as
• Latency sensitive
• Bandwidth sensitive

12

Hugepages to Optimize MPI

§ Use HUGEPAGES
§ Linking and running with hugepages can offer a significant performance

improvement for many MPI communication sequences
• including MPI collectives and basic MPI_Send/MPI_Recv calls

§ Most important for applications calling MPI_Alltoall[v] or performing point
to point operations with a similarly well-connected pattern and large data
footprint

§ To use HUGEPAGES:
• module	load	craype-hugepages8M	(many	sizes	supported)
• <<		re-link	your	app		>>
• module	load	craype-hugepages8M
• <<		run	your	app		>>

13

Key Environment Variables for XC
§ Use MPICH_USE_DMAPP_COLL for hardware supported collectives

§ Most of MPI's optimizations are enabled by default, but not the DMAPP-optimized
features, because…

§ Using DMAPP may have some disadvantages
• May reduce resources MPICH has available (share with DMAPP)
• Requires more memory (DMAPP internals)
• DMAPP does not handle transient network errors

§ These are highly-optimized algorithms which may result in significant performance gains,
but user has to request them

§ Supported DMAPP-optimized functions:
• MPI_Allreduce (4-8 bytes)
• MPI_Bcast (4 or 8 bytes)
• MPI_Barrier

§ To use (link with libdmapp):
• Collective use: export	MPICH_USE_DMAPP_COLL=1

14

Key Environment Variables for XC
§ MPICH GNI environment variables

§ To optimize inter-node traffic using the Aries interconnect, the following are the most significant env variables
to play with (avoid significant deviations from the default if possible):

§ MPICH_GNI_MAX_VSHORT_MSG_SIZE
• Controls max message size for E0 mailbox path (Default: varies)

§ MPICH_GNI_MAX_EAGER_MSG_SIZE
• Controls max message size for E1 Eager Path (Default: 8K bytes)

§ MPICH_GNI_NUM_BUFS
• Controls number of 32KB internal buffers for E1 path (Default: 64)

§ MPICH_GNI_NDREG_MAXSIZE
• Controls max message size for R0 Rendezvous Path (Default: 4MB)

§ MPICH_GNI_RDMA_THRESHOLD
• Controls threshold for switching to BTE from FMA (Default: 1K bytes)

§ Refer the MPI man page for further details

15

Key Environment Variables for XC

§ Specific Collective Algorithm Tuning
§ Different algorithms may be used for different message sizes in collectives (e.g.)
• Algorithm A might be used for Alltoall for messages < 1K.
• Algorithm B might be used for messages >= 1K.

§ To optimize a collective, you can modify the cutoff points when different
algorithms are used. This may improve performance. A few important ones are:

• MPICH_ALLGATHER_VSHORT_MSG
• MPICH_ALLGATHERV_VSHORT_MSG
• MPICH_GATHERV_SHORT_MSG
• MPICH_SCATTERV_SHORT_MSG
• MPICH_GNI_A2A_BLK_SIZE
• MPICH_GNI_A2A_BTE_THRESHOLD

§ Refer the MPI man page for further details

16

MPI+X Hybrid Programming Optimizations

§ MPI Thread Multiple Support for
§ Point to point operations & Collectives (optimized global lock)
§ MPI-RMA (thread hot)

§ All supported in default library
(Non-default Fine-Grained Multi-Threading library is no longer needed)

§ Users must set the following env. variable:
§ export	MPICH_MAX_THREAD_SAFETY=multiple

§ Global lock optimization ON by default (N/A for MPI-RMA)
§ export	MPICH_OPT_THREAD_SYNC=0	falls back to pthread_mutex()

§ “Thread hot” optimizations for MPI-3 RMA:
§ Contention free progress and completion

§ High bandwidth and high message rate
§ Independent progress – thread(s) flush outstanding traffic, other threads make uninterrupted progress

CPU

Memory

Network Card

MPI + Threads

CoreCore

T0 T1

17

Cray MPI support for MCDRAM on KNL

§ Cray MPI offers allocation + hugepage support for MCDRAM on KNL
§ Must use: MPI_Alloc_mem() or MPI_Win_Allocate()
§ Dependencies: memkind, NUMA libraries and dynamic linking.

module load cray-memkind

§ Feature controlled with env variables
§ Users select: Affinity, Policy and PageSize
§ MPICH_ALLOC_MEM_AFFINITY = DDR or MCDRAM
• DDR = allocate memory on DDR (default)

• MCDRAM = allocate memory on MDCRAM

§ MPICH_ALLOC_MEM_POLICY = M/ P/ I
• M = Mandatory: fatal error if allocation fails

• P = Preferred: fall back to using DDR memory (default)
• I = Interleaved: Set memory affinity to interleave across MCDRAM NUMA nodes (For SNC* cases)

§ MPICH_ALLOC_MEM_PG_SZ
• 4K, 2M, 4M, 8M, 16M, 32M, 64M, 128M, 256M, 512M (default 4K)

18

Cray XC Routing
§ Aries provides three basic routing modes

§ Deterministic (minimal)
§ Hashed deterministic (minimal, non-minimal),

hash on “address”
§ Adaptive
• 0 – No bias (default)
• 1 – Increasing bias towards minimal (as packet

travels)
∗ Used for MPI all-to-all

• 2 – Straight minimal bias (non-increasing)

• 3 – Strong minimal bias (non-increasing)

§ Non-adaptive modes are more susceptible to
congestion unless the traffic is very uniform and
well-behaved

§ MPICH_GNI_ROUTING_MODE environment variable
§ Set to one of ADAPTIVE_[0123], MIN_HASH,

NMIN_HASH, IN_ORDER
§ MPICH_GNI_A2A_ROUTING_MODE also available

Cray	XC	group:	
Minimal	path:	2	hops
Non-minimal	path:	4	hops

module load adaptive-routing-a3
module unload adaptive-routing-a3
module help adaptive-routing-a3

19

Core Specialization
§ Offloads some kernel and MPI work to unused

Hyper-Thread(s)
§ Good for large jobs and latency sensitive MPI

collectives
§ Highest numbered unused thread on node is

chosen
§ Usually the highest numbered HT on the

highest numbered physical core
§ Examples

§ aprun -r 1 ...
§ aprun -r N ... # use extra threads

§ Cannot oversubscribe, OS will catch
§ Illegal: aprun -r1 -n 256 -N 256 -j 4

a.out
§ Legal: aprun -r1 -n 255 -N 255 -j 4

a.out
§ Legal: aprun –r8 –n 248 –N 248 –j 4

a.out

8-Byte Allreduce on Theta
64 processes per node
(run in production – other jobs
are running)

20

Summary
§ Optimizations were done in Cray MPI to improve pt2pt and collective latency on KNL
§ Further tuning is possible through the environment variables
§ Topology & routing-based optimizations, huge-page and hybrid programming optimizations could be

explored
§ MPI 3.0 nonblocking and neighborhood collectives are optimized
§ Necessary to use -r1 (core spec) to reduce performance variability due to OS noise

References:
§ Cray XC series Network: https://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf

§ MPI 3.1 Standard: https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
§ Cray MPI for KNL: https://www.alcf.anl.gov/files/Chunduri_MPI_Theta.pdf (May 18 workshop - slightly basic version than this

talk)
§ MPI benchmarking on Theta: https://cug.org/proceedings/cug2018_proceedings/includes/files/pap131s2-file1.pdf
§ Advanced MPI Programming Tutorial at SC17, November 2017 (https://www.mcs.anl.gov/~thakur/sc17-mpi-tutorial/)

§ Low-overhead MPI profiling tool (Autoperf): https://www.alcf.anl.gov/user-guides/automatic-performance-collection-autoperf
§ Run-to-run Variability: https://dl.acm.org/citation.cfm?id=3126908.3126926
§ LDMS: https://github.com/ovis-hpc/ovis/tree/master/ldms

https://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.alcf.anl.gov/files/Chunduri_MPI_Theta.pdf
https://cug.org/proceedings/cug2018_proceedings/includes/files/pap131s2-file1.pdf
https://www.mcs.anl.gov/~thakur/sc17-mpi-tutorial/
https://www.alcf.anl.gov/user-guides/automatic-performance-collection-autoperf
https://dl.acm.org/citation.cfm%3Fid=3126908.3126926
https://github.com/ovis-hpc/ovis/tree/master/ldms

21

Hands-on Session

§ Few sample codes are provided here at
https://xgitlab.cels.anl.gov/alcf/training/tree/mpi/ProgrammingModels/MPI/Theta

§ These are also accessible at
/projects/Comp_Perf_Workshop/examples/training/ProgrammingModels/MPI/Theta

§ The nonblocking_coll and nonblocking_p2p have sample run scripts to submit jobs
§ Feel free to experiment with using the environment variables with your own

application codes
§ Some examples to try out

Potential performance optimization (Huge pages, Routing mode change, Hardware collective offload,
Core specialization etc.)
Functionality specific (nonblocking collectives, MPI+X etc.)

https://xgitlab.cels.anl.gov/alcf/training/tree/mpi/ProgrammingModels/MPI/Theta

